Roobert V2 - first impressions

Here are some first impressions of the second version of Roobert - a home robot project.

You can download all CAD files and source code on github.

Head and arms of Roobert V2 assembled:

The new face frame with more sensor spaces:

Backside of the new head:

Side of the new head:

The new arm with 5 servo axis (instead of 3 at Roobert V1):

Building a home robot: Part 7 - the front RGB LED display

(see all parts of "building a home robot")

A Raspberry Pi touchscreen is used to show Rooberts face. So it can´t be used to show status information like battery state or the “feelings” of its python finite state machine.

Fortunately the body front was still missing – so this seemed to be a good place to mount additional optical output.

I tried several small LCD- and OLED Displays, but they didn’t please me.

In the end I used an 8x8 Neopixel array, a 24 Neopixel ring and a 1 Neopixel lighted big button.

In the beginning the 8x8 pixel array was too bright to see the 8x8 pixel as one image. After attaching a 3d printed cover it looked like quadratic pixels.

The python code can read a GIF file and display it on the 8x8 pixel display. When in idle mode, Roobert shows a beating heart GIF.

The outer ring of Neopixels shows the battery state when driving around and the buttons Neopixel glows up when it seems to be a good idea to press it now.

(see all parts of "building a home robot")

Building a home robot: Part 5 - arms and hands

(see all parts of "building a home robot")

I wanted Roobert to get two identical hands with separate moveable fingers.

Because of this (and the small size) I decided to use a commercial construction kit instead of designing and constructing the hands on my own.

Although it was a construction kit it was fun for hours to assemble the hands:

Each arm is constructed from the hand construction kit, 3 servos, 3d printed servo brackets and an I2C servo controller. Because the servo controller seemed to be unable to shut down the servo power, I attached a relays for each arm to turn the servo power on/on.

The servo holder for the upper arm parts are printed in 3D:

The complete arms:

The right arm:

A roobert-hand-assembling-workplace :-)